课程大纲
应用材料简介 Machine Learning
- 统计学习与机器学习
- 迭代和评估
- 偏差-方差权衡
使用 Scala 进行机器学习
- 库的选择
- 附加工具
回归
- 线性回归
- 泛化和非线性
- 习题
分类
- 贝叶斯复习
- 朴素贝叶斯
- 逻辑回归
- K-最近邻
- 习题
交叉验证和重采样
- 交叉验证方法
- Bootstrap
- 习题
无监督学习
- K-means 聚类
- 例子
- 无监督学习和超越 K 均值的挑战
要求
了解 Java/Scala 编程语言。建议基本熟悉统计学和线性代数。
客户评论 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.