课程大纲
介绍
什么是人工智能?
- 计算心理学
- 计算哲学
Machine Learning
- 计算学习理论
- Computer 计算体验算法
Deep Learning
- 人工神经网络
- 深度学习与机器学习
准备开发环境
- 安装和配置 Mathematica
Machine Learning
- 导入和分离数据
- 对数据进行归一化和插值
- 对元素进行分组和排序
预测变量和分类变量
- 使用线性模型
- 表示数据集
- 生成值序列
受监督 Machine Learning
- 实施受监督的任务
- 使用训练数据
- 衡量绩效
- 识别集群
总结和结论
要求
- 对 Mathematica 的理解
观众
- 数据科学家
客户评论 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
课程 - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.